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‘1 ASYMPTOTICALLY ROBUST DETECTION OF STOCHASTIC

‘, SIGNALS IN CONTAMINATED NOILISE

7 M.S. SCHNITZER and D.R. HALVERSON

2 Department ot Electrical Engineering

}? Texns A&M University

ix College Station, Texas 77843

" )

R, ABSTRACT
[ —

”: We consider the discrete time detection of stochastic
) signals in white noise, where the univariate noise density
j: is known perfectly only on am interval about the origin.
72 We present a method to enhance the asymptotic performance
ii of the detector by exploiting this knowledge, and at the
iy same time preserve robustness properties of the detector

}' to the remaining inexact knowledge of the univariate noise
$ﬁ density via a saddlepoint condition. We then provide
i?i examples to show that improved performance is indeed
b obtained.

4

_;-E I. INTRODUCTION

22 Consider the discrete time detection of stochastic
- signals in independent and identically distributed noise.
;3 if the underlying statistical distributions are completely
;ﬁ known, then selection of a Neyman-Pearson optimal detector
‘; is possible. However, in many cases knowledge of the
g' univariate noise density is imperfect, particularly for
.?: extreme values of its argument. In such situations the
;as employment of a detector which is robust to the inexact
N statistical knowledge may be desirable. Earlier work of
;. Kassam and Thomas [1) and Poor, Mami, and Thomas [2] points
-§ toward the introduction of limiting for observations of
.$ large magnitude in order to impart robustness into the

.i detection scheme. In particular, [2] considers the

e
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asymptotically robust detection of stochastic signals in

imperfectly known noise.

Iln this paper we consider further applications of
detectors possessing the same property of limiting. We note
that often more is known about the univariate noise density
near the origin than on the tails, and such knowledge has
the potential to be exploited for improved performance. In
some earlier work [3] we show how to design the robust
o detector by exploiting this knowledge for improved performance
v over the detector of [1]; this work is applicable to the case
of a time varying deterministic signal embedded in imperfectly
known nocise. We now consider the analogous extension of [3]
for improved performance over the detector of [2]. Our results
illustrate how such improved performance can be obtained and

still preserve the robustness of the detector to the remaining

inexact knowledge of the univariate noise density through the

employment of limiting.

11. DEVELOPMENT

Suppose we denote the i.i.d. discrete time noise process
by {Ni;i=l,2, ...} , with £(-) denoting the associated
univariate noise density, and let the stochastic signal be
denoted by {Sj;i=1,2,...} ; the zero mean independent
signal process is assumed to be independent of the noise. The

detection problem then reduces to a choice between

a
I

::E:.l Hy t Y, =N, +05 31=1,2, ...,n

;Ei? where we observe realizations y; of the random variables Y;.
‘;?‘ A< in [1-3]), we assume the noise density f(.) is a member of
.?3 the Huber-Tukey mixture class, i.ce. f(.) can be ecxpressed as

SO
LLCAASIN

f(.)=(1-¢)fg(.)+c-h(.), where ¢ is a fixed known number

’

between zero and unity, fg(-) is a known symmelric nominal

density, and h(+) is an unknown "contaminating" density. In

addition, however, we assume that f(:‘%Fio‘gaé‘&;qan.‘;E‘Kev‘?&‘h!‘ﬂfnﬂﬁ'ESEARCH (AFSC)
vach x on an *3TICE OT ';‘;‘.,‘E\’SEGTT‘TALTODTIC
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:; interval [-a, al], i.e. h(x) = fo(x) for all x in [-a, a}l. We
N note in passing that a similar assumption is c¢mploved in (2]
oo without being directly exploited. Motivated by the results of
~§: {1-3}, as well as the form of the locally optimal detector
A Y}
‘:J given by [2], we employ the class of detectors where a test
' statistic of form
:~'
)Q n
$$ Tg(y) = L Efs J g(y;) is compared to a threshold, with the
o i=1
\f_:
YNy nonlinearity
-.‘._: f(')' (x)/fo(x) if |x sk
.- g(-) given by g(x) =
K.~
o £ (k)/f_ (k otherwise
S8 NROVINCY
(; We thus see that specifying k effectively specifies the
N detector.
:i: In order to analyze and compare the performance of the
- detector, and hence determine k for best performance, an
A asymptotic fidelity criterion is employed. Because of its
:% telationship to the Pitman-Noether theorem {4], the criterion
~
o of Asymptotic Relative Efficiency (ARE) is particularly useful;
v5? the associated efficacy functional n provides a convenient
; -
- measure of performance, where n is defined by Accesion For )
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in other work which employs the ARE, the results of this paper

arce valid only when various mild regularity conditions are

imposed on the underlying statistical distributions. These

Xy Ny 2 3]

R

}5’ assumptions are imposed to guarantee that our cexpressions
X

L exist and, when nccessary, are nonzero; additionally,

Al

-
‘jﬂk

\.\..\\ A
A RGNS

b e
-.. (‘-.-.f\

) ) ._ . : .- -
“ﬂ e ‘J‘ e et L Tt e e e € '-.{x"-‘ “ -.’ - ’\* AN e R0 ""- T'-.* " R
S WETARET s q i M M o™ 3 L)



—4-

, revularity assumptions are required to insure the relevancy of

the ¢fficacy functional to the ARE via satisfaction of the

‘}i hypothesis of the Pitman-Noether theorem [4]. In this paper,

f:g our results are presented under the tacit assumption of these

;;ﬁ numerous though obvious mild conditions. We refer the

A: interested reader to |5-7], in which analogous assumptions are
:‘ explicitly listed. 1t should be noted that we do not impose

R

symmetry assumptions on the contaminating density h(-.).

To preserve the robustness property of the detector, k is

e then chosen according to sgp igf n{k,h), wherc dependence of n
o on k and h(-) is indicated. Such a choice of k will be called
h:ﬁ an optimal choice. The following result provides insight into
h ; how to obtain an optimal choice of k:
L @
i- Theorem: Let
e K = {k>0: if k>a thenlg(—)'andlg'(-n are weakly monotonelon
§ [a,k]} . Then a necessary and sufficient condition for k to
s
‘fx be an optimal choice over K is that k yield the supremum among
o a k 2
-
aE 2¢ J 8" (x),(x)dx +(1-c) I g" (x) £ (x)dx
| (a) inf n(k,h)= -9 a
s h
bioss a k
G [(8200)-8200) 5 (x)dx +(1-) (82 (x)-g2(kNE (x)dx +482 (k)
b
,, 0 a
N 2
,;u k
_.i-. if k~a 2¢ )f g" (x)f,(x)dx
e e
% (b) inf n(k,h)= 0
1Y
@,
e J (82 () =g2 (kD () dx +h? ()
._':.
( ‘ ()
M,
0’ it k<a,
.J' =
e e,
L Proof: Consider first the proof for part (a). Note that by
th negative scaling when necessary we can assume without loss of
S
i
ja:;‘.
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'
,ﬂ generality that g'(.) is wecakly increasing on [a,k], i.e.

H
¥ g"(x) 20 on la,k]. Moreover, by symmetry we also have
;: g"(x)200n [-k,-a]. In a manner similar to the proof of the
b, Theorem of [3] we obtain by direct evaluation

x n(k,h)=

: ; T
P o2 J " (x)f (x)dx +(1-¢) I 8" (x)f(x)dx| +¢ j g" (x)h(x)dx
-',-
:( 0 a a
=, -a 2
s e +i g"(x)h(x)dx

N
o e )
D a

4 ” )
2 2 J (82 (x)=82(K))F o (x)dx +2(1=¢) J (2 (x)-g2 (k)E , (x)dx
a
k -a
+2l (k) + J(gz(x)-gz(k))h(x)dx + I(gz(X)-g?(k))h(X)dx
d -

AN

»: Noting the weak monotonicityToflg(.)limplies that g2(-) is

: weakly increasing, we observe that the numerator of the above
5
g is minimized while the denominator is simultaneously maximized
';, if h(x)=0 on {-k, -a}l v {a,k}. The expression given for

2,
= i?f n(k,h) in part (a) then follows directly.
b 1
L For part (b) a similar evaluation when ksa yields
- 7 )

£ c] 2 } g"(x)fo(x)dx ]

n(k,h)= 0

k
2 f gz(x)fo(x)dx +2(1—r)g2(k) I fo(x)dx
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oo -k k
Noting that J h(x)dx + J h(x)dx= 1-2 Jfo(x)dx’
k

— 0

'
s

[
‘l"“‘l

we obtain an expression for n(k,h) which is independent of

h(-) and which agrees with the expression given for inf n(k,h)

h
in part (b).

.l
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PATRTATA

We remark that differentiation of the expressions of the

XG0
Y v

Theorem could be¢ employed as in [3]) for the purpose of
obtaining a condition on an optimal choice k as a solution

of a nonlinear equation. However, we have found that for
this stochastic signal situation the appropriate equations
are typically so complicated that it is no more difficult

to search directly over the inf n(k,h) values. We also
remark that the techniques of [3) could be employed to extend
the Theorem to the case of an asymmetric nominal density; the
chief cost for such an extension would be the considerably

more cumbersome expressions for the igf n{k,h) quantity.

We now consider an example which employs a zero mean
unit variance sech noise nominal density, i.e.

fg (x) = L sech(%WX) for all x.

We compare the "worst case"” efficacy nz of the detector
w
’

of 2] (i.e. the minimal efficacy over those h(+) satisfying
our constraints as well as those of [2]) with the "worst case"
etticacy ql,w of our detector with k chosen via the Theorem.
The results, which depend on the choice of a and ¢, are

tabulated below:

- LIPS D NP IE I ANy Bl A, CaT, 2 € TR T
T S e N R Y AT Lot
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Table: Values ot - .
1,w/ bW
F=0. | .=0.3 L =00 £ =0.7 1‘

4=2.00 6.02 2.65 l.44 .13
N a=1.50 6.02 2.65 L. 44 1.13
a=1.00 3.45 2.73 L. 44 1.13
e -
4=0.50 2.73 .55 115 1.04

Note that the most dramatic improvement in performance
occurs when the greatest certainty is present concerning the
univariate noise densitv (small ¢ and large a). This is
probably consistent with what we might expect, however it is
also directly opposite to what was observed for the Gaussian
example of [3] for the time varying deterministic signal case.
Other such opposing effects are known to exist when cuomparing
the stochastic and deterministic signal cases, ev.g. respective
symmetrvy and skew symmetry of the nonlinearity g(-), and thus
the results illustrated here need not be viewed as surprising

when compared to those of [3]).

11I. CONCLUSION

We have introduced an approach toward improving the
asymptotic performance of a detector of a stochastic signal
by exploiting available knowledge of the univariate noise
density near the origin, while at the same time retaining the
robustness of the detector to inexact knowledpe of the tails
of the noise density. We have shown by wav of example that

such improved "worst case" performance does indeed ovccur.
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